
www.softed.com

This course is about quality – in particular, what can
developers do to make sure that we are building the right
system, and that we are building it the right way.

If we want software development to move from being an art to becoming
more of an engineering discipline, we need to become more structured and
disciplined in what we do. We look at various technical practices of agile
software development and how to apply them towards the goal of quality.

This course is geared around four primary topics, with each topic
building on those before it:
•	 Topic 1 revolves around unit testing – how to write effective unit tests to

ensure that the system is working. This includes using test doubles and
dependency injection to write true unit tests without complicating the
production code.

•	 Topic 2 is about legacy code – how to minimise risk while updating legacy
code bases. This includes improving the technical quality without
breaking existing behaviour; and how to do this while applying unit tests to
legacy code bases that were developed without any consideration given to
automated testing..

•	 Topic 3 explores test-driven development (TDD) – how to ensure that the
system is well designed and developed. TDD is all about design, not
testing. Good design and code results in a system that is easily
maintainable. TDD applies unit testing to ensure that the system is
working as designed.

•	 Topic 4 introduces specification by example – how to ensure that the
system meets the users’ and stakeholders’ needs. Writing automated
acceptance tests, and using these to drive TDD, ensures that not only is
the system well built, but that it also is the right system.

Learning outcomes
By the end of the course you will be able to:
•	 Write and maintain effective unit tests

•	 Refactor code without breaking the observable functionality

•	 Identify the seams to add unit tests to legacy code bases

•	 Apply test-driven development (TDD) to write tested code

•	 Write good specifications / acceptance tests

•	 Automate the acceptance tests

•	 Perform software development as an engineering discipline.

Agile Programming
Techniques

Duration
In person: 2 days in person

LiveOnline: 4 sessions of 3.5 hours
each

Intended for
•	 Developers who wish to design

and develop systems using Agile
techniques

•	 Technical Testers wanting a
deeper understanding of
Test-Driven Development,
Behaviour-Driven Development,
and Acceptance Test-Driven
Development.

Prerequisites
You need to have a working
knowledge of Java, C#, or
JavaScript. We also recommend that
you have completed some formal
Agile training, such as our Agile
Fundamentals course.

www.softed.com

Content
•	 Unit Testing

This module looks at the structure of a unit test and how
to write them. Common patterns and good practices of
unit testing are investigated, as well as the need for
ongoing maintenance and curation of the test suite.

•	 Dependency Injection
Proper unit tests should only verify a single module, and
often require the use of test doubles to achieve this
isolation. The different types of test doubles (stubs, fakes,
mocks) are considered, as well as how to inject the test
doubles into the unit under test and the use of inversion
of control frameworks.

•	 Refactoring
Making changes to existing code runs the risk of breaking
something that was working previously. This module looks
at how changes can be made in a structured fashion to
minimise the risk of change.

•	 Legacy Code
Safe refactoring requires unit tests, but what if the code
doesn’t have any unit tests? This module introduces how
to use seams and enabling points to add unit tests to code
that was not designed with testing in mind.

•	 Test-Driven Development and Behaviour-Driven
Development
Most software development practices focus on building
the right thing for the users, but ignore technical quality
came about as a way to help build technical quality in.
This module looks at how to do TDD, as well as how BDD
helps to make TDD easier.

•	 Acceptance Test-Driven Development
While technical quality is important, an elegant system
that doesn’t meet the users’ needs is useless. ATDD uses
automated acceptance testing to drive TDD and ensure
that the resulting system is acceptable to the users. Good
practices of ATDD are considered under the name
Specification by Example.

•	 Cucumber
The Cucumber tool allows us to write automated
acceptance tests using a language common to (and
understandable by) both the technical team and the
business. This module looks at the structure of this
language (Gherkin) and how to write the fixture code that
automates the language.

Method used
This is a hands-on development course where the learning is
achieved through applying the practices and techniques in
programming exercises.

While the concepts and principles apply to most languages, the
exercises are carried out using Java, C#, or JavaScript.

Delivery
This program is offered as a classroom-based course as well
as a LiveOnline program. Our LiveOnline delivery is over three
days (each four and a half hours in duration). The instructor
is 100% live and interaction and learning objectives are the
same as our in-person classes with the added benefit of
being able to take this course from your home, your office or
your home office. Since this class is delivered over half-days
it allows for greater flexibility and leaves you with time each
day for other work or activities.

Agile Programming
Techniques

